1t/h地埋式生活污水处理设备供应
选择小宇环保,我们会为您提供的服务,专业的技术,可靠地设备,全程为您服务。从设备的图纸研发、设备运输,到专业技术人员跟去安装调试,过环保验收,更有客服人员为您解疑答惑。选择小宇就是放心。
太阳能微动力污水处理技术:
太阳能微动力污水处理技术是以传统“a2/o”工艺为基础,利用太阳能光伏板光电转换技术,为污水处理中的曝气、回流等提供动力。同时,要求设备运行管理具有智能化,通过远程通信技术,能实现设备的实时在线监控,达到远程控制、无人值守的目的。同时吸纳“a2/o”工艺中的关键因素,即可结合市政电网也可*脱离市政电网给系统提供动力,整合开发形成的一种全新工艺,该工艺采用现代*技术与环保工程的有机结合,从整体上采用了自动化的控制,自动运行,为农村污水处理工程的有效运行提供了有力的支持。
太阳能微动力污水处理技术以太阳能发电为主,市政电网为辅,在阳光充足的时候能为电网供电,在长期阴雨天的情况下,从电网取电,满足系统所需动力要求。利用太阳能光电转换技术,为农村生活污水处理中的增氧曝气、搅拌、回流等提供动力,实现废水深度可靠处理。同时,将设备运行管理智能化,远程控制,远程监控,实现无人值守,以适应农村基层缺乏专业技术管理人员的实际情况。
工艺流程说明
集中收集而来的污水首*入污水处理系统内的厌氧池,在厌氧池内污水完成水解酸化过程、产乙酸过程。通过水解和酸化过程,提高原污水的可生化性,从而减少后续反应的时间和处理的能耗。
经过厌氧池处理的污水进入缺氧池。缺氧池内利用兼氧微生物来降解废水中的污染物。从好氧池回流的硝化液含有一定的溶解氧,改变了污水中的溶氧浓度,使污水形成较好的缺氧环境,反硝化菌在缺氧池利用新进入的污水中丰富的有机物作碳源进行反硝化反应,将回流混合液中的大量no3-n和no2-n还原为n2释放至空气,实现污水的脱氮。
如何实现合理科学的设备运行?
运行操作中应注意的几点:合建式曝气池的回流量是在试运行时,根据闸阀的开启度和叶轮转速做试验确定的,运行时可参考数据来控制,也可以用沉淀区的稳定性来控制,只要回流量不冲击沉淀区即可。
经鼓风后的压缩空气温度与外界气温温差较大时(特别是冬季),空气管内容易产生冷凝水,使空气流动受阻,影响正常曝气,所以应经常排放冷凝水和湿气,排放完毕立即关闭闸阀,防止空气流失。
曝气池在运行中,当池面出现大量白色气泡时,说明池内混合液污泥浓度太低,在培养活性污泥初期或回流污泥浓度低、回流量少时,可能出现上述情况。此时,应设法增加污泥浓度,使期达到达2~3克/升。
但是,当曝气池液面出现大量棕黄色气泡或其他颜色气泡时,可能进水中含碳量太高,丝状菌大量繁殖,或进水中含有大量的表面活性剂等原因,这时应采用降低污泥浓度,减少曝气的方法,使之逐步缓解。
曝气叶轮运转时,应注意浸没深度,叶轮正常运行时,周围涌浪推向池壁没有水珠飞溅、电流下降现象。为此,分建式曝气池可将出水闸阀压低,使池水位升高,避免叶轮离开水面和叶片堵塞。
合建式曝气池回流窗口闸门不能提得太高,否则回流窗口出流不能破坏旋流而造成叶片离开水面和叶片堵塞。应注意窗口开启度的随时调整。曝气池长期运行,部分死角的积泥应清除掉。
另外,各类曝气头都有被污泥堵塞和损坏的现象,所以应定期清除、检修和更换曝气头。对池内一般钢部件应进行防腐处理,同时做好空气管路的防漏和检修工作,防止空气流失及供氧不足的弊端,造成能源浪费。
厌氧生物处理作为污水处理的一个重要方法,具有许多优点,尤其适用于高浓度有机废水的处理,但也存在处理过程不稳定、运行周期长、反应器启动缓慢等缺陷。对高浓度有机废水而言,将厌氧工艺控制在产酸阶段,不仅降低了对环境条件的要求,从而使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。对于中低浓度的污水来说,由于其有机物浓度低,若采用以能源回收为主要目的之一的厌氧消化,在经济上未必合算。水解酸化工艺与普通曝气工艺相比,尽管处理效果较差,但由于无需曝气而大大降低了生产运行成本。因此,探讨水解酸化动力学特性和工艺过程,寻求一种节能的污水处理工艺,具有重要的理论和现实意义。
水解酸化工艺机理
水解酸化工艺是考虑到产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间段短的厌氧处理第1 阶段,即在大量水解细菌、产酸菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程。水解酸化工艺作为各种生化处理的预处理,可改进废水的可生化性,为废水的有效处理创造良好的条件。厌氧生物降解的基本模式为水解阶段,固体物质降解为溶解性的物质,大分子物质降解为小分子物质;产酸阶段,碳水化合物降解为短链的挥发性酸,主要是醋酸、丁酸和丙酸;甲烷化阶段是整个厌氧消化过程的控制阶段。
如何保证污泥的良好性能?
污泥指数则可反映活性污泥的松散程度和凝聚性能。污泥指数过低说明泥粒细小,无机物多,缺乏活性和吸附能力。污泥指数过高说明污泥难于沉降分离,即将膨胀或已经膨胀。正常运行时,沉降比为30%左右,溶解氧为0.5~2.0mg/l。污泥指数为80~120l/g,操作人员可按此值掌握曝气池污泥情况。
春季与夏季过渡期,水温为15℃~30℃时,产生丝状菌膨胀的微生物之一浮游球衣菌增殖快。如此时池内溶解氧低,曝气池内丝状菌将大量繁殖,导致污泥膨胀,所以此时期应加大曝气量,或降低进水量,以减轻负荷,或适当降低污泥浓度,使需氧量减少。
另外,夏季二次沉淀池内死角的积泥也易产生厌氧发酵,还应注意及时*地排泥,避免污泥上浮,随水出流,影响出水水质。秋夏和冬季还可能产生污泥脱氮或污泥解体现象,操作人员应针对产生的原因,采取具体、有效的防治措施。
活性污泥法处理污水,水温在20~30度时,净化效果好,如水温能维持在7~8度时,可采取提高污性污泥浓度和降低污泥负荷等措施保证二级出水水质。除磷脱氮的工艺系统,可以用延长曝气时间或其他提高水温的措施来补水温低所造成的影响。
厌氧生化处理的概述
废水厌氧生物处理是指在无分子氧的条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程。
厌氧生化处理过程:高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
1、水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
2、发酵(或酸化)阶段
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
3、产乙酸阶段
在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
4、甲烷阶段
这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。