如何理解工业大数据

发布时间:2024-02-16
大数据的理念已经广为大众所接受,其核心都强调价值。目前,除了大数据的基础建设之外,从数据到信息的工作,更多的是停留在社交或商业数据挖掘上。例如,销售预测、用户关系挖掘与聚类、推荐系统、观点挖掘等。这些研究都非常重要,也极具创新意义,特别是对拉动消费很有帮助。但是,这些实践都只关注了“人为数据或与人相关的数据”,而忽略了“机器数据或工业数据”,如设备控制器、传感器、制造系统等。
产品做出来之后,到底如何使用它?以前关心的是如何生产最好的产品,现在关心的是产品怎么去用,消费体验在哪里?第一,我们现在对工业价值的认知必须从后往前移,从消费端走到生产价值链前端。第二,从关注机器与机器的数据或工业环境数据,到全面协同优化,关注这个价值体系,实现我们对工业4.0的完整理解。
在工业大数据的实践中,宏观与微观、规模与定制、个性与共性必然成为主要的几个矛盾。在这三大矛盾的背后,我们要通过工业大数据看到我们以前看不到的因素,处理好这些数据,就像jay lee教授讲的,让数据成为有价值的信息。工业4.0的五个支撑力值得我们关注。一是降低生产过程中的浪费。生产过程中的消耗来源于组织与组织之间、人与人之间、材料与工艺之间、流程之间,所以我们首先要考虑的问题是,如何降低消耗、浪费。二是制造工业环保与安全。没有碳排放是不现实的,但排放怎么转移,怎么去消费它是问题。三是根据生产状况,实现系统自我调整。在工业大数据里,我们称之为自适应。整个工业4.0讲的就是自适应、自感应、自调理。大数据分析到最后有很大程度取决于人工智能,指的是自适应能力的强弱,机器自我学习能力的强弱。四是实现制造业的价值化。五是实现用户需求、产品设计、制造和营销的配合。
这五大支柱的焦点就是显性因素和非显性因素。我们曾经关心的是产品的制造、产品的制造工艺、产品本身的质量等显性因素。考虑的点都是可触摸的或可量化的。在工业大数据里,想要解决的问题就是那些非显性因素。
设备处于亚健康状态,我们看不到。对于未来的智能工业来说,想要达到零宕机、零排放、零维修等目的,必须突破的一个关键点就是关注相关的隐形因素,做好量化与数据交叉关联分析。
上一个:小卡怎么按,苹果4S手机的小卡从哪插入
下一个:压力变送器如何做好防护工作

win10键盘所有按键没反应(windows10按键盘没反应)
z7mini怎么强制关机,努比亚手机z7mini怎么关不了机了怎么办
手机恢复出厂设置在哪里找,oppo手机恢复出厂设置在哪里找
武汉HYV22电缆规格ZRC-HYA53铠装通信电缆
德国宝德burkert隔膜阀报价5281系列
RC1210FR-07536KL,1210 536KΩ 1% 1/2W 电阻
平板笔记本电脑哪个品牌好(平板笔记本哪款性价比高)
m2固态数据恢复,m2如何恢复出厂
度蜜月去国外哪里好 度蜜月旅行地最佳排行榜
丽江有哪些景点必去 丽江游玩攻略